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Triangles; the beginning of logic and reason:

By: Michael D. Gernon, Ph.D.
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1) The Area of a Triangle calculated form the side lengths:

The area of a triangle is equal to one half the base multiplied by the height. In order to calculate the area of a triangle
given only the length of the sides, use the Pythagorean theorem as shown below:
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For a 13, 14, 15 triangle, the magnitude of h, |, and the area (A) are:
132 4+142 - 152 169 + 196 — 225 _
B 2(14) B 28 B
h=4132—(5)2 =144 = 12
_hb (12)(14)
= > = > =

The area formula above is not as compact as Heron’s formula, but it does show that the area of a triangle can be
calculated solely from the lengths of the three sides. This formula can be converted via some algebra to Heron’s formula.
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A=\/S(s—a)(s—b)(s—c) S=%b+c
A =./21(6)(7)(8) = /327224 = 84 s = 5 124 15 21

Given access to computers for fast calculations, one can use either form of the equation. Heron’s formula is easier for
calculation by hand.

2) The radius of the incircle:

To calculate the radius of the triangle’s incircle, consider the following diagram:

—
b (1= 14) g

The center of the incircle is equidistant from some point on each of the three sides of the triangle wherein a line from
the center to a given side forms a right angle with the side. The dotted lines shown are always equidistant from two
sides of the triangle (i.e., the two sides converging at the vertex the dotted line originates from) wherein a line from a
given point on the equidistant line to one of the two sides forms a right angle with side. We can conclude that the
equidistant lines from two vertices intersect at some point which is equidistant from some point on each of the three
sides. Logic dictates that the third equidistant line must also intersect at this same point. Further, one can conclude that
the equidistant lines must bisect the angles they originate from. It is apparent that the area (A) of the triangle is:

a+b+c 42
A= fr+gr+hr f+g+r=T=7=21
A=84=r(f+g+h)=21r r=4
A a+b+c
r = — § = —

S 2
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3) The location of the incircle center:

To find the (x, y) position of the center of the incircle, consider the following:
|
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Sln(l//)=a=1—3 cos(z//)=5=1—3
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1 —cos(y)  |[1-7
(W —cos(y 13 _
sm(z)—\/ = = 0.55470

1+ cos(y) 1+ >
coS 12
cos (%/) — \/ ¥ = 213 — 0.83205

T 4
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4) The radius of the circumcircle:

To calculate the radius of the triangle’s circumcircle, consider the following diagram:

R C
a
h
center
R
/1._] e
b

The Thales Central Angle Theorem guarantees a right angle in the triangle with a hypotenuse length of 2R (diameter of
circle) given that R is the radius of the circle. The two triangles contain the same angle theta as guaranteed by the Thales
Inscribed Angle Theorem; or equally logically by the fact that both angles sweep out the same arc within the circle.

c 2R 4 4= bh - 2A
h a ree=aATy ~ b
ac abc abc (13)(14)(15)
2R =57+=— R = = = 8.12

24 24 4A (4)(84) 8.125
b

R abc

J@+b+co)(a+b—c)a+c—b)(b+c—a)
13)(14)(15
R A3)ADAS) o 19c

" @G0 0hH1D)
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5) The location of the circumcircle center:

To find the cartesian coordinates of the center of the circumcircle, consider the following diagram:

A

R (&)
2 @&
P b
/i 6)
Q
g
R
H R

b? 14)2
( 4) = 4.125

b
=—=7 =H= |R2—— = 125)2 —
X =3 y 2 (8.125)

Note that the above equations for the (x, y) coordinates of the center is accurate so long as the center of the circumcircle
is within the triangle. If the center of the circumcircle is outside the triangle, then, with the longest side of the triangle
placed on the x-axis and the shortest side to the left (assign the longest side to side b and the shortest side to side a), the
correct equations are given below. Note that this will not work if side “c” or side “a” are the longest (diagram above).

_b R PR hen b >
X =3 y = = Z when l

The center of the circumcircle is on the b side edge (i.e., y coordinate of circumcircle center = 0) when:

2 2 2

(b l) =D (b)z—(b) bl+12+h2 bh=-
2 2 2)  \2 ]
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The graphic below illustrates the case wherein the circumcircle center is outside the triangle.

The graphic below illustrates the case wherein the circumcircle center is located on the b-side of the triangle.




M. D. Gernon, 2/8/2024

6) The radius of the excircle:

To find the radius of an excircle of a triangle, consider the following diagram:

The total area of the quadrilateral in the lefthand figure is equal to the sum of the area of the two triangles (green &
brown). The area of the original triangle (blue) is equal to the area of the quadrilateral minus the area of the grey
triangle.

. ary + cry
Area of Quadrilateral = —
ary, + cr, — br; (a+c—>b
Area of Triangle (blue) = A = > 2b b= b > )
B A B A B A
™ _(a+c—b)_(a+b+c—2b)_(a+c—b)
2 2 2
B A _a+b+c
= s—a 5= 2
_ 84 e
T o114
The radii of the other two excircles are calculated in the same way.
A 84 A 84
T, = = 10.5 T, = 14

s—a (21— 13) s—c (21-15)
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7) The location of the excircle center:

To find the cartesian coordinates of the center of the triangle’s “b-side” excircle, consider the following diagram:
(¥

(x,y)
excircle
center

y-axs

With the coordinate axes in this orientation, the value of x for the center of the excircle is r,. We will leave the value of y
undetermined for now. We next rotate the axes counterclockwise by the angle theta.

y'-axis
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With the coordinate axes in this orientation, the value of y’ is —r,. We will calculate the value of x’ as follows.
x’] _ [ cos(0) Sin(H)] lx]
y'l  |—sin(@) cos(6)|Lly
[ x' ] _ [ cos(0) sin(@)] l?‘b]
—1,|]  |=sin(0) cos(0)]LY

x' =1y, cos(8) + ysin(0)

—1, = =13, sin(6) + ycos(8)
cos (0) cos?(0)
sin (0) * =T sin (0)

0 =1,[1 —sin(8)] + ycos(0)
cos () cos?(0)
sin (0) * =T {sin (6)

2.6
x'=r, {CS(;; ((0)) + sin(0) — 1}

, 1 —sin?(0)
B { sin(6)

+ ycos(0)

+ sin(0) — 1}

sin (0)
cos (0)

+ sin(0) — 1} tan(0)

x'=mn, {sin(@) — sin(0) + sin(6) — 1} tan(0)

x' =nr,{csc(0) — 1}tan(6)

hypotenuse — opposite
x' =n{sec(0) —tan(6)} =1, ( 24 PP )

adjacent

, {13 5}—12<8)—8
YT T2 T \12) T

With the coordinate axes in the (x’, y’) orientation (i.e., the orientation wherein the “b-side” of the triangle is oriented
along the x’-axis), the coordinates of the center of the “b-side” excircle are (referring now to this orientation as x, y):

x=8, y=-12
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To find the center of the “c-side” excircle, we first exchange the triangle’s sides as shown and find the center of the “b’-
side” excircle:

R
W J
b -1
2
l,_a’2+b’2—c’ _ a4 o | g2 a2+ b'%2 —'2 2_112
- w7 —J° 20’ -

14 8.4
sec(0") = 7= 1.25 tan(0) = 3= 0.75 0’ = 0.6435011

A A 84

rb'=r0=5—c=5—b’=(21—15)=

x' =r{sec(8") —tan (0')} = r.{1.25 - 0.75} = 14(0.5) = 7
x'=7 y =-14

Now we want to rotate and translate this point (x’, y’) back into the original coordinate system (x, y). We need to rotate
the point counterclockwise as a vector by an angle of /2 + 0’ followed by a translation of 14 in the positive x direction

(translation = length of a’).
x' 14
|+ o]
ME

ME

14

] - -
cos(6’ + E) —sin(8’ + E)

s [
sin(8' + E) cos(6' + E)



M. D. Gernon, 2/8/2024

_ T
cos(” +) —sin(8’ + ) _[cos(2.214297) —sin(2.214297)
~ [sin(2.214297)  cos(2.214297)

s s
sin(8' + E) cos(6' + E)

lcos(2.214297) —sin(2.214297)“ 7 ]_ [—0_6 —0,8” 7 ]
sin(2.214297)  cos(2.214297) |1-141 108 -0.611-14

x' 17
[y’]rotated - l14]

X’ X1 _[7+ 1471 121
[y’]rotated&translated - [}’] - [ 14 ] - [14

Finally, we reorient the triangle to find the center of the a-side (a-side = b”-side in reorientation) excircle.

y‘-axis \
o |B
(2%
'@\ //;\ "
/ )? h
& Z
@
B
J X - axis
& NV & S ’
Iu bn (I = 13) b = I
a"? + "% — ¢"? a'2 + b"2 — ¢"2\?
"= X = 7615385 h"= |a"?— X = 12.923077
o 15
sec(8") = — = = 1.160714

h" 12.923077
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an(6") — ' _ 7615385 o
T = T 120923077~
0 = 0.532504
A A 84
rb" = ’ra = = = 105

s—a s—b" (21 —13)
x" =r,{sec(8") —tan(6")} = 10.5(1.160714 — 0.589286) = 6
x"=6, y'=-10.5

In order to rotate this point (x”, y”) back into the original coordinate system (x, y), we also need the angle beta. We can
find this angle with any inverse trigonometric function, and here we will use the inverse secant function along with a
check using the inverse tangent function.

14
== — 1.083333
sec(B) = 45 = 12923077

ran )_b ' _ 5384615 _
an(f) = == = 13923077~

B = 0.3947914

Now we rotate and translate this point (x”, y”) back into the original coordinate system (x, y) by an initial translation of 13
(length of b”) in the negative direction followed by a rotation of the translated point clockwise as a vector through an
_ T . T
cos(f+=) sin(B+=)]| un
2 2 [x —1 3]
n

angle of /2 + .
b
ly] - . m n
—sin(f +=) cos(f+ %)
i 2 27
lx- _ [ cos(1.965588) sin(1.965588)] [
yl — |—sin(1.965588) co0s(1.965588)|L—10.5

xl _ l —0.384615 0.92307671] l
y —0.92307671 —0.38461511-10.5

m - [1_0.75]

8) Tangent points of the excircles with the triangle:

Note that we can find the tangent points of the excircles with the triangle as the intersection of a line from the center of
the excircle that forms a right angle with the line containing the given side of the triangle.
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For the intersection with the a-side; the line that contains the a-side of the triangle is:

2-0 _12 __,
5—0x_ SX— AaX

The line that contains the center of a-side excircle and forms a right angle with the a-side of the triangle:

Vg =MyX + by =

1
Yaex = —ﬁx + bgex = —0.416667x + by ox

baex = y1 —mx; = 10.5 — (—0.416667)(=7) = 7.583331
Vaex = —0.416667x + 7.583331

Set things equal to find the intersection of the two lines:

_ 7.583331
~ 2.816667

y = —0.416667(2.692307) + 7.583331 = 6.461536
Tangent Point of the a-side Excircle with the a-side of the Triangle: (2.692307, 6.461536)

For the intersection with the b-side; the line that contains the b-side of the triangle is:

2.4x = —0.416667x + 7.583331 «x = 2.692307

yb=mbx+bb=0

The line that contains the center of b-side excircle and also forms a right angle with the b-side of the triangle is a line
parallel to the y-axis and containing the center of the b-side excircle; thus, the intersection occurs at (8, 0).

Tangent Point of the b-side Excircle with the b-side of the Triangle: (8, 0)

For the intersection with the c-side; the line that contains the c-side of the triangle is:

h-0 ., _12-0 . _ 12 . _ 4

[— 147 TP T 5 g ¥ TP T T g X T e T T3 T e

be = yp —mx, = 0—(~1.333333)(14) = 12 — (-1.333333)(5) = 18.666667
Ye = —1.333333x + 18.666667

The line that contains the center of c-side excircle and forms a right angle with the c-side of the triangle:

1
Yeex =~ 1333333 % T

bcex =y1 —mx; = 14 —0.75(21) = —1.75
Yeex = 0.75x — 1.75

Y. =mXx + b, =

beex = 0.75x + b o5

Set things equal to find the intersection of the two lines:

—1.333333x + 18.666667 = 0.75x — 1.75 x =9.8

y = —1.333333(9.8) + 18.666667 = 0.75(9.8) — 1.75 y=15.6
Tangent Point of the c-side Excircle with the c-side of the Triangle: (9.8, 5.6)
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Note that the tangent point is not necessarily at the intersection of the line containing a given side of the triangle and
the line from the center of the excircle on the same given side of the triangle and the center of the incircle.

We can also calculate these tangent points by rotation/translation of the tangent points of the excircles when they are
oriented below the x-axis (i.e., on the b-side of the original orientation) prior to rotation/translation. Here is the
calculation for the tangent point of the c-side excircle. The center of the c-side excircle in the (x’, y’) coordinate system
prior to rotation/translation is (7, -14), and the coordinates of this tangent point after rotation and translation back into

the (x, y) orientation will be:
lg] + l104]

ME

] - -
cos(6' + E) —sin(8’ + E)

s s
sin(0’ +=) cos(8’' +—=)
| 2 27 |
6’ = 0.6435011

lxl _ [cos(2.214297) —sin(2.214297)] l7] 4 l14]
y sin(2.214297) cos(2.214297) |10 0

lxl _ l—0.6 —0.8] l7] N l14] _ [9.8
y 0.8 —0.6110 0 5.6
Here is the calculation for the tangent point of the a-side excircle. The center of the a-side excircle in the (x”, y”)

coordinate system prior to rotation/translation is (6, 0), and the coordinates of this tangent point after rotation and
translation back into the (x, y) orientation will be:

X _ cos(f + g) sin(fB + g)- X" — 13
ly] ) —sin(f +E) cos(f + E) [ V' ]
i 2 27

f = 0.3947914
lxl _ [ cos(1.965588) sin(1.965588)] l_7]
vyl |—sin(1.965588) co0s(1.965588)|1 0

lxl _ l —0.384615 0.92307671] l—7] _ 12.692305
y —0.92307671 —0.38461511 0 6.461537

The tangent point with the b-side excircle in the original configuration does not require rotation

One can also calculate the intersections of the lines from the centers of the excircles to the center of the circumcircle and
the lines that contain the sides of the triangle (i.e., line segments that are the sides of the triangle).
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9) Intersections of triangle sides with line between circumcircle and excircle centers

Intersection of the a-side with the line between the center of the circumcircle and the center of the a-side excircle.
Vo = 2.4x

(10.5 — 4.125)
Ya,circ = (_7 — 7) X+ ba,circ = —0.4553571x + ba,circ

Yn = —0.4553571x;, + by circ b circ = Yn +0.4553571x,
bg cire = 10.5 + (0.4553571)(=7) = 4.125 + (0.4553571)(7) = 7.3125
Yacirc = —0.4553571x + 7.3125

The intersection of the two lines is:

24x = —0.4553571x + 7.3125 Xintersect = 2.560976
Yintersect = —0.455357 1xintersect + 7.3125 = 2.4Xintersect = 6.146341

Intersection of line between a-side Excircle center and Circumcircle center & a-side = (2.560976, 6.146341)

Intersection of the b-side with the line between the center of the circumcircle and the center of the b-side excircle.

yp =0

(=12 —4.125)
Yb,circ = (8 — 7) X+ bb,circ = —16.125x + bb,circ

bp cire = —12 + (16.125)(8) = 4.125 + (16.125)(7) = 117
Vb eire = —16.125x + 117

The value of y along the b-side of the triangle is zero.

0 =-16.125x + 117 x = 7.255814

Intersection of line between b-side Excircle center and Circumcircle center & b-side = (7.255814, 0)

Intersection of the c-side with the line between the center of the circumcircle and the center of the c-side excircle.

y. = —1.333333x + 18.666667

(14 — 4.125)
Ye,circ = 21 — 7)

be.cire = 14 — (0.705357)(21) = 4.125 — (0.705357)(7) = —0.812498
Ve cire = 0.705357x — 0.812498

X + begire = 0.705357x + bg cire



M. D. Gernon, 2/8/2024 16

The intersection of the two lines is:

—1.333333x + 18.666667 = 0.705357x — 0.812498  Xjnrersece = 9.554746
Vintersect = —1.333333Xinrersect + 18.666667 = 5.927009
Vintersect = 0.705357Xinrersect — 0.812498 = 5.927009

Intersection of line between b-side Excircle center and Circumcircle center & b-side = (9.554746, 5.927009)

Compare the two graphics below. The line between the circumcircle center and a given excircle center intersect the
adjacent side of the triangle closer to the tangent point of the given excircle with the adjacent side than does the
corresponding line between the incircle center and the given excircle center; but neither set of intersections align exactly
with the tangent points of the excircles in a scalene triangle.

L1l
=

lines circumcenter to excircle center

26

18

14

10

0 -16 -12 -8 -4-2 4 8 20 24 28 32

10

14
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17

lines incircle center to excircle center

- e
-2
10) Distances between excircle centers:

The distances (d) between the excircle centers of a 13, 14, 15 triangle are:
dap =~/ (=7 —8)2 + (10.5 — (—12))2 = /(—15)2 + (22.5)% = 27.0416
daje = /(=7 —21)2 + (10.5 — 14)2 = /(—28)2 + (—3.5)2 = 28.2179
dpje =+/8 —21)2 + (=12 — 14)% = /(—13)2 + (—28)2 = 30.8707
The distances between the incircle center and the excircle centers of a 13, 14, 15 triangle are:
dajin = (6= (=7))% + (4 — 10.5)2 = \/(13)2 + (—6.5)2 = 14.5344
dpjin =6 —8)2 + (4 — (—12))2 = /(—2)% + (16)% = 16.1245
dejin =~/6 —21)2 + (4 — 14)2 = \/(=15)% + (—10)? = 18.0278
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The distance between the incircle center and the circumcircle center of a 13, 14, 15 triangle is:

Ainjcir = 6 — 7)2 + (4 — 4.125)2 = /(=1) + (—0.125)% = 1.007782

11) Summary of 13, 14, 15 triangle parameters with the (13, 14) vertex at the origin (a =13, b =14, c = 15):

Fa

Area =84

Coordinates of (a, b) vertex = (0, 0)
Coordinates of (b, c) vertex = (14, 0)
Coordinates of (a, c) vertex = (5, 12)
Radius of Incircle =4

Center of Incircle = (6, 4)

Radius of Circumcircle = 8.125

Center of Circumcircle = (7, 4.125)

Radius of a-side (13) Excircle = 10.5
Center of a-side Excircle = (-7, 10.5)
Tangent Point of a-side excircle = (2.692307, 6.461536)
Radius of b-side (14) Excircle = 12

Center of b-side Excircle = (8, -12)
Tangent Point of b-side excircle = (8, 0)
Radius of c-side Excircle = 14

Center of c-side Excircle = (21, 14)
Tangent Point of c-side excircle = (9.8, 5.6)

If you are looking for a good “non-right” triangle to illustrate numerous calculations, then you can’t do better than the
13, 14, 15 triangle. The 13, 14, 15 scalene triangle is the functional analog of the 3, 4, 5 right triangle in terms of ease of
use. Observe that the lines between two given excircle centers pass through the corresponding vertex of the triangle. In
a scalene triangle, the line from the incircle center or the circumcircle center to a given excircle center do not pass
through the tangent point of said given excircle with the triangle.

12) Graphics and parameter summaries for a variety of triangles:

An Excel sheet was composed to produce triangle diagrams (lines to incircle center) for arbitrary isosceles, equilateral,
and scalene triangles. Below are diagrams and parameters summaries for several different triangles.
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25

15

a 13

b 14

c 15

Triangle Area 84

length (a down) 7.615384615
length (b down) 5

length (c down) 84

height (a down) 12.92307692
height (b down) 12

height (c down) 11.2

g (a down) - g" (radians) 0.532504098
g (b down) (radians) 0.39479112
g (c down) - g' (radians) 0.643501109
Sum of Angles (degrees) 90

Incircle Radius 4
Circumcircle Radius 8.125

a side Excircle Radius 10.5

b side Excircle Radius 12

c¢ side Excircle Radius 14

Center (Incircle) 6,4

Center (Circumcircle) 7,4.125
Center (Excircle a) -7,10.5
Center (Excircle b) 8,-12
Center (Excircle c) 21,14

19
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25

15

-15

N
(¢,

31

a 5

b 14

c 11

Triangle Area 24.49489743
length (a down) -5

length (b down)

3.571428571

length (c down)

13.27272727

height (a down)

9.797958971

height (b down) 3.499271061
height (c down) 4.453617714
g (a down) - q" (radians) -0.471861837

g (b down) (radians)

0.795602953

g (c down) - q' (radians)

1.247055211

Sum of Angles (degrees) 90
Incircle Radius 1.632993162
Circumcircle Radius 7.858779591

a side Excircle Radius

2.449489743

b side Excircle Radius

24.49489743

c side Excircle Radius

6.123724357

Center (Incircle)

4,1.632993162

Center (Circumcircle)

7,-3.572172542

Center (Excircle a)

-1, 2.449489743

Center (Excircle b)

10, -24.49489743

Center (Excircle c)

15, 6.123724357

20
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25

15

1 31
a 11
b 17
c 8
Triangle Area 35.4964787

length (a down)

-4.727272727

length (b down)

10.17647059

length (c down) 14.5
height (a down) 6.453905218
height (b down) 4.176056317
height (c down) 8.874119675
g (a down) - q" (radians) -0.632185249

g (b down) (radians)

1.181387591

q (c down) - q' (radians)

1.021593985

Sum of Angles (degrees) 920
Incircle Radius 1.972026594
Circumcircle Radius 10.53625638
a side Excircle Radius 5.070925528
b side Excircle Radius 35.4964787
c side Excircle Radius 3.54964787

Center (Incircle)

10, 1.972026594

Center (Circumcircle)

8.5, -6.225969677

Center (Excircle a)

-1, 5.070925528

Center (Excircle b)

7,-35.4964787

Center (Excircle c)

18, 3.54964787

21
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15

21

31

a 15
b 17
c 4
Triangle Area 27.49545417
length (a down) -1.6
length (b down) 14.64705882
length (c down) 10

height (a down)

3.666060556

height (b down)

3.234759314

height (c down)

13.74772708

q (a down) - 9" (radians)

-0.411516846

g (b down) (radians)

1.353438247

g (c down) - q' (radians)

0.628874925

Sum of Angles (degrees)

920

Incircle Radius

1.527525232

Circumcircle Radius

9.274260335

a side Excircle Radius

9.16515139

b side Excircle Radius

27.49545417

c side Excircle Radius

1.963961012

Center (Incircle)

14, 1.527525232

Center (Circumcircle)

8.5, -3.709704134

Center (Excircle a)

-1,9.16515139

Center (Excircle b)

3,-27.49545417

Center (Excircle c)

18, 1.963961012

22
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9 ) 21 31
-5
2o

a 11

b 11

c 11

Triangle Area 52.39453693

length (a down) 5.5

length (b down) 5.5

length (c down) 5.5

height (a down)

9.526279442

height (b down)

9.526279442

height (c down)

9.526279442

g (a down) - q" (radians)

0.523598776

g (b down) (radians)

0.523598776

g (c down) - q' (radians)

0.523598776

Sum of Angles (degrees)

20

Incircle Radius

3.175426481

Circumcircle Radius

6.350852961

a side Excircle Radius

9.526279442

b side Excircle Radius

9.526279442

c side Excircle Radius

9.526279442

Center (Incircle)

5.5, 3.175426481

Center (Circumcircle)

5.5, 3.175426481

Center (Excircle a)

-5.5, 9.526279442

Center (Excircle b)

5.5, -9.526279442

Center (Excircle c)

16.5, 9.526279442

23
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a

13

b

14

C

23

Triangle Area

81.24038405

length (a down)

19.30769231

length (b down)

-5.857142857

length (c down) 12.08695652
height (a down) 12.49852062
height (b down) 11.60576915
height (c down) 7.064381221

q (a down) - q" (radians) 0.99629774
q (b down) (radians) -0.467380701

g (c down) - q' (radians) 1.041879288

Sum of Angles (degrees) 90

Incircle Radius 3.249615362
Circumcircle Radius 12.88152453

a side Excircle Radius 6.770032004
b side Excircle Radius 7.385489459

c side Excircle Radius

40.62019202

Center (Incircle)

2,3.249615362

Center (Circumcircle)

7,10.81358748

Center (Excircle a)

-11, 6.770032004

Center (Excircle b)

12, -7.385489459

Center (Excircle c)

25, 40.62019202

24
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Appendix I: Tangent Points of the Incircle with the Triangle

25

The tangent points of the incircle with the triangle can be determined in a manner similar to that used to find the (x, y)

coordinates of the excircles. The tangent point of the incircle with the b-side of the triangle is the easiest.

\

A

\J

A

— 19 _-0.832
> 0.83205
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T 4
b= G ~ sin G = 055470 4t

x = Lcos (%/) — (7.2111)(0.83205) = 6

To find the next tangent point (c-side):

y=0

A

2
\\\

A\
{& h

Y
'
b'-1I'
M b' (I'= 15)
2
l,_a’2+b’2—c’ _ a4 o | g2 a’2+b’2—c’22_112
- 2b’ - — | 25 -
| o112 ' 84
sin(y/) = Py cos(y/) = =17
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(V) _ [L—cos(y) _
sin| - | = 5 =

o)

!

r

1+cos(y)
- —

|84
2 =+v0.2 =0.447214
1--I-84
> =10.8 = 0.894427
4 4
= = 8.944271

sin (ﬂ) i (ﬂ) V0.2

2

X' _Lcos( ) (8.944271)V0.8 = 8

2

y' =0

Next, we rotate the triangle by 0" + /2 counter clockwise followed by translation of the triangle by +14 (b = 14) to get

back to the original coordinate system.

ME

- 9,+7r
cos( 2)

in(60' + z
_sm( 2)

14

in(60' + a
sin( 2)

B+ 1]

9,+7r
cos( 2)_

8.4 11.2
' = arcsm( ) = arccos (—) = 0.6435011

] - -
cos(6' + E) —sin(8’ + E)

s s
sin(8' + E) cos(6' + E)

14
_[cos(2.214297) —sin(2.214297)
~ [sin(2.214297)  cos(2.214297)

[cos(2.214297) —sin(2.214297)] l8l_l—06 —0,8] 18]
sin(2.214297) cos(2.214297) N —0.6110
'x’] _[—48
Ly rotated 6.4

5] -[}]

rotated & translated

c—side tangent point

r—453+—14] l ]

27
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Finally, we calculate the a-side tangent point. Referring to the diagram previously used for the a-side excircle:

y - axis
A
-
v
N
@
L"
- <.-'w!"" - axis
- @’ %)
Y
|" bll - I"
L% W
Y
X" b" (1= 13)

po GBI sses we | (TR N L gas0r
- an - . - a an - .

h" 12.923077 [" 7.615385

sm(w)=?= T cos(y") = — = T

?
()5t ()L

, ; o [ 7615385
— COS -
sin (—) — J — 15  _ 0.4961389

2 2 2
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, reos |1+ 7615385
coS
e (—) = = 15 _ 8682431
2 2
T

29

2
L" = = i = = 8.062258
T (y/) T (r,u) 04961389
SIn | - sSIn \ -
2 2
no__ n l//' — — no_
x" = L"cos > )= (8.062258)(0.8682431) =7 y' =0

In order to rotate this point (x”, y”) back into the original coordinate system (x, y), we also need the angle beta. We can

find this angle with any inverse trigonometric function, and here we will use the inverse secant function along with a
check using the inverse tangent function.

C 14
sec(f) = = 12923077 1.083333
b" —1" 5.384615
tan(B) = o = 12923077 - 0.416667
B =0.3947914

Now we rotate and translate this point (x”, y”) back into the original coordinate system (x, y) by an initial translation of 13

(length of b”) in the negative direction followed by a rotation of the translated point clockwise as a vector through an
angle of /2 + .

] o | _
[;] _ cos(f + E) sin(fB + E)

[x" —"13]
—sin(f + g) cos(f + g) Y

lx- _ [cos(1.965588) sin(1.965588)] [—6]
vyl = |—sin(1.965588) c0s(1.965588)|L 0

X1 _ [ —0.384615 0.92307671] l—6]
LY | —0.92307671 —0.3846151L 0
X _ [2.30769
LY a—sid incircle tangent point 5.53846

a-side tangent = (2.30769, 5.53846); b-side tangent = (6, 0); c-side tangent = (9.2, 6.4)
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Appendix I: Tangent points & merged circles

The tangent points of the incircle of a triangle coincide with the tangent points of three circles pushed together until they
just touch wherein the radii of the three circles are determined by the lengths of the three sides of the triangle. The
circle centers are the vertices of the triangle. The radii of the three touching circles are determined as:

Ry, R,, R; are the radii of the three circles R; > R, > R,
R, + R, = a (shortest side)
R, + R; = b (medium side)
R, + R; = c (longest side)
R;—R,=b—a
2R; =b—a+c
b—a+c c+b—a

R; = > = > (vertex b,c = 0,b)
b—a+c c+a—0»>

R, = > = > (vertex c,a =1, h)
b—a+c a+b-—c

R, = > = > (vertex a,b = 0,0)

2 Largest Circles on Longest Side
2 Smallest Circles on Shortest Side

Largest & Smallest Circles on Intermediate Side

The tangent circles for a 13, 14, 15 triangle can be visualized in the graphic below:
A 84
Rincirete =S =51 14+ 1372
c+b—a 15+14-13

R; = > = > =8 (vertex 0,14)
ct+a—b 15+13-14

Re=—7 = 2
a+b—c 14+13-15

=== 2

=7 (vertex 5,12)

=6 (vertex0,0)
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2L
=

The first graphic below shows the excircles (radii = 6, 3, 2) for a 3, 4, 5 right triangle. The second graphic below shows
the merged circles for a 3, 4, 5 triangle (radii = 3, 2, 1). The vertices of the triangle, which are also the centers of the
merged circles, are (0, 0), (b, 0), and (I, h); i.e., (0, 0), (4, 0), (0, 3).

8 .7 6 5 -4-3-2-3 0 2 3/4 7 8 9 10111218

31
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N

e

The first graphic below shows the excircles (radii = 34.46737588, 5.744562647, 3.133397807) for a 12, 17, 7 triangle; the
second graphic below shows the merged circles for a 12, 17, 7 triangle (radii = 11, 2, 1). The vertices of the triangle (i.e.,
the centers of the merged circles) are (0, 0), (b, 0), and (I, h); i.e., (0, 0), (17, 0), (11.29411765, 4.054985398).

o Jo ]
[

18
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H
g

R
¢ ]

The largest circle is necessarily placed on the vertex between the longest side and the medium side. The smallest circle
is placed on the vertex between the shortest side and the medium side. The medium circle is placed on the vertex
between the longest side and the shortest side.

Here is the triangle graphic and the merged circle graphic for an 11, 11, 11 equilateral triangle. The excircle radii are all
the same at r =9.526279442, and the merged circle radii are all the same at r = 5.5; triangle vertices are (0, 0), (11, 0),
(5.5, 9.526279442); note that, for an equilateral triangle, the radii of the excircles are equal to the height of the triangle
and the radii of the merged circles are equal to the length from the origin to the base of the height line in the triangle
(i.e., ¥ of the length of a side for an equilateral triangle).

15
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Appendix Il: New Triangles with Sides Equal to the Excircle Radii of a Different Triangle:

The excircle radii of a given triangle can be used to create a new triangle (3’ =r,; b’ =y, ¢’ = ). We will refer to this
process as triangle iteration. An equilateral triangle has three equal excircle radii, and equilateral triangles “produce”
viable new triangles with ever decreasing size forever (i.e., triangle iteration continues ad infinitum).

A A A bh/2
(s—a) (s—=b) (s—c) (a+a+a-2a)/2

y —y = oo D@sinG) o (%) = @sin(g) = @sin(3)

a

sin M = 0.866025 < 1
®

The new values of @', b’, and ¢’ after iteration of an equilateral triangle are about 87% of the length of the original a, b,
and c; as the new triangle is still equilateral, the iteration process produces viable triangles ad infinitum. Not all triangles
can be iterated forever. If the excircle radii reach values where the sum of two radii is less than the other radius, then a
new triangle can’t be produced. lterated isosceles triangles, are not guaranteed to produce viable new triangles forever.

~

¢

a c >h

Y J

I b

/i
a=c h<a=c 0<b<2a=2c 0<w<§ 0 <sin(y) <1
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A A

35

_ 0)(@)sin(y) _ (b)(e)sin(y) _ (b)(a)sin(y)

g = 1¢

:(s—a):(s—c)_ b+c—a

Ta =1, = (a)sin(y) = (c)sin(y) = h

a =c=r,=r.<a=c

The length of the two equal sides decreases after each iteration.

Ifb<a=c then

__®@sinw) _
7 (a+c-b)

. (b)(a) sin(y)
> (a+c—-b)

T
- <

= s(b) sin(y)

b+a-c

(a)sin(y) < a

b'=m, =qry =qr. =qa’ =qc’ = qh

n, =b' <1y,

.=h=a =c<a=c

b

(c)sin(y) < c

T
W<§ & 0.86603 < sin(y) <1
' = ' = gh = b <1
q@sin(y) = g sin(y) = qh g =———
¢ <1 =b'<b
S_a+c—b =

An a, b, ciisosceles triangle with a = cand b < a = c can be iterated ad infinitum. The new values of a’, b’, and ¢’ are all
less than the previous values, and the new values of a’ and ¢’ remain equal. Also, the new value of b’ remains less than
the new equal values of a’ and ¢’. Under these circumstances, the triangle iteration process can continue ad infinitum;
though the triangle iterates to a steep A-frame with angle y approaching n/2 fairly rapidly. The length of sidesa & c
approach a constant value while the length of side b approaches zero. See the Table below.

Triangle

’

a

bl

7

C

v (degrees)

10, 7, 10 (w = 69.51268489°)

9.367496998

5.044036845

9.367496998

74.38150172

9.367496998, 5.044036845, 9.367496998

9.021608675

3.323750564

9.021608675

79.38489215

9.021608675, 3.323750564, 9.021608675

8.867220175

2.002275523

8.867220175

83.51729895

8.867220175, 2.002275523, 8.867220175 8.810523072 1.1213393 8.810523072 86.35143958
8.810523072,1.1213393, 8.810523072 8.792665486 0.59755979 8.792665486 88.05268116
8.792665486, 0.59755979, 8.792665486 8.787587662 0.309111124 8.787587662 88.99223333

8.787587662, 0.309111124, 8.787587662

8.786228399

0.157298207

8.786228401

89.48711606

& b<a+c

. (b)(a) sin(y)
7 (a+c-b)

If b>a=c

T
then O<py<-= &

6

q(a) sin(y) = q(c) sin(y) = qh

b' =1, > (a)sin(y) =1, = a’ = (c)sin(y) =1,

b =

_ () (@)sin(y) _

= (a+c—-b)

a
If (s)sin(y) = (m) sin(y) > 1

s(b) sin(y)

0 < sin(y) < 0.86603

q =

b

T a+c-b

>1

=c=h<a=c

then

a

a+c—>b

>1

b'>b
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) sin(y) = (——) (

sin(y) + 2cos(y) = 2

(s)sin(y) > 1
s sin(y)(55°) = 0.960

5= 2 —2cos(y)

)

s(55°) = 1.173

(a) sin(y)

sin(y)

36

1

T 2a- (2a) cos(w) T2-2 cos(y) -
w = 0.927295218 radians = 53.13010235°

if 0< y<53.13010235°

s sin(y)(45°) = 1.207

s(45°) = 1.707

ssin(w)(30°) = 1.866

s(30°) = 3.732

If b’ > b (recall that a’ = ¢’ <a =), then the angle y’ is less than y and the magnitude of the inequality b’ >a’ =’ is
greater than the magnitude of the inequality b > a = c; also, the magnitude of s’ will be greater than s leading to the

value of b” being greater than b’ while a” = ¢” will be less than a’ = ¢’. With iteration, the length of “b” will continue to
increase and the value of “a” & “c” will continue to decrease at a continually increasing rate. If b’ > b, then eventually
iteration will lead to the length of the longer side of new triangle exceeding the sum of the two shorter sides; and the

new triangle will not be viable. Iterated triangles with b’ > b diverge quickly (see Table below):

Triangle

’

a

bl

’

C

y (degrees)

7,10, 7 (v = 44.4153086)

4.898979486

12.24744871

4.898979486

Not Viable

11,12, 11 (y = 56.94426885)

9.219544457

11.06345335

9.219544457

53.13010235

9.219544457, 11.06345335, 9.219544457

7.375635565

11.06345335

7.375635565

41.40962209

7.375635565, 11.06345335, 7.375635565

4.878524365

14.63557311

4.878524365

Not Viable

11,13, 11 (y = 53.77845338)

8.874119675

12.81817286

8.874119675

43.76174271

8.874119675, 12.81817286, 8.874119675

6.137883278

15.95849651

6.137883278

Not Viable

If (s)sin(y) <1 then

53.13010235° < < 60° &

b'<b

If k=§ & k'=2—:=s(£i:?v(j)‘”)=% then k'>k & b'>d
K- b s'(W)sin(y) s'b' (SHEG)sin(y)  SHEG)
=== . = = : = =sk
a a’ sin(y/) a’ a sin(y) a
(sD(s)(b)
2 e B
k' (%) a +c —b'
k" o (a) sin(y) B a
kK7 (@)sin(y) + (o) sin(y) — ()(B)sin(y)  a+c— (s)(b)
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sb
k’_ 7)_ ~ a >1 k||>kl
k_(é)_s_a+c—b > k' k
a
bn bl b , ) .
—>—>=>1 v <y (s)sin(y) > (s)sin(y)

If b>a =c, then the ratio of b to a is greater than one. Even when b’ is less than b, the ratio of b’ to a’ is still greater than
the ratio of b to a. With each iteration the magnitude of “b/a” and (s)sin(y) increases at a greater rate. Eventually, the
magnitude of (s)sin(y) increases to a value wherein b’ > b. Thus, all isosceles triangles with b > a = ¢ will iterate to a set
of “@”, “b”, and “c” values that do not yield a viable triangle.

The Table below shows the iteration of a 13, 14, 15 scalene triangle until “@” + “b” < “c” (i.e., it is non-viable).

Triangle Radius Excircle A | Radius Excircle B | Radius Excircle C y (degrees)
13, 14, 15 (y = 67.38013505) 10.5 12 14 76.63516676
10.5,12, 14 7.908881288 9.807012797 14.42207764 108.5181255

7.908881288, 9.807012797, 14.42207764 | 4.506471913 5.872475287 22.3286772 Not Viable

Scalene triangles always iterate to a set of excircle radii that can’t form a viable triangle. See the proof below.

T
F; \\ L
.
¥
) k\.
f
|
! *
.I-
K
]
#
T,
I
.I.
g
|
/ N0
04 N
i h
e "\-
f P
|
f
Iy
f
J \\x
I
§ ‘x\
i
f “"-.L_‘
|
f “‘a._x
f
i k\.
Fi By
f -""-\. \"-\.
| LY H'\
I I| [ "\
Y
,l'll"P J ™,
8 r
" ey —\.\__‘. o —

For a scalene triangle witha<b<c&a+b>c:

4 kb (a)(b)sin(y) (a)(b)sin(y) (a)(b)sin(y)
T, = = = < <
(s—a) b+c—a b+c—a C b
A hb _ (@) (D) sin(y)
rb_(s—b)_a+c—b_ a+c—>b
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(a)(D) sin(y) S (a)(D) sin(y) (a)(D) sin(y) < (a)(D) sin(y)
a+c—0>b a a+c—b> c
I hb  (a)(b) Sln(w) (@)(D) sin(y) _ (a)(b) sin(y)
T, = >
(s—c) Ta+b-c  a+b-c a b
a' <b' < a' <a b’ <b c'>h
The length of ¢’ is not guaranteed to be longer or shorter than c.
¢’ (a)(b%;in(yo a+c—>b c—(b—-a)
_ a+b—c _ B _ B B
b\ (@)(b)sin(y) _(a+b—c>_( —(c—a))
a+c—0>b
¢ @%ff??@ _(bt+tc—ay (ct+(b-a) _c
a | (@()sin(y) _(a+b—c>_(a+(b—c)>>_
b+c—a
b" Og%ﬁ?ﬁw _(b+c—ay (b+(c—a) _b
a | (@(b)sin(y) _(a+c—b>_(a+(c—b)>>_
b+c—a

The condition wherein the new values of “a”, “b”, and “c” no longer form a viable triangle are:

(a)(b) Sln(l//) (a)(b) Sln(l/f) (a)(b) sin(y)
a+b—c b+c—a a+c—>b
1 1 1
a+b—c>b+c—a+a+c—b

(a+c—b)b+c—a)>(a+b—c)(a+c—Db)+(a+b—-c)(b+c—a)

c? —(a? +b?) + 2ab > a? —b* —c?*+ 2cb + b* —a? — c? + 2ca
c? —c?+2ab > —2c?+ 2¢ch + 2ca
2ab > 2ca — 2c? + 2¢ch

ab>c(a+b—c)

>§(a+£—c)=§(g+1_%)=c+c( c)
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! !

c _c a a C
— > = ( —>1

5> <7 Let (5—1)=k

b

1>%—k(2)=c ——k >
1
_a
1

S| r—\|©\| =
|

b

The magnitude of ¢/b and thus also k increases with each iteration. The magnitude of 1/a and 1/b increases with each
iteration, but the value of 1/a increases more rapidly than does 1/b with each iteration.
L (L
b a™

1 1 11

——k(=))>(=-k

b a b a
Where superscript n’ designates n iterations. Thus, all scalene triangles eventually iterate to a set of excircle radii that do
not form a viable triangle. See some examples in the Table below:

Eventually; 1>

a" b c" c"'/b" c"/a™ b /a"
4 5 7 1.4 1.75 1.25

2.449489743 3.265986324 9.797958971 Not Viable

12 14 15 1.071429 1.25 1.166667
9.285504199 12.14258241 14.35032467 1.181818 1.545455 1.307692
6.502677298 9.735646802 15.80926132 1.623853 2.431193 1.497175
1.506764822 2.281448615 66.87171419 Not Viable

21 22 25 1.136364 1.190476 1.047619
16.80659211 18.20714146 24.27618861 1.333333 1.444444 1.083333
11.90774806 13.36583966 28.47504971 Not Viable

Isosceles triangles with the two equal sides longer than the third side and equilateral triangles iterate ad infinitum.
Isosceles triangles with two equal sides longer than third side converge on a line segment.
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An equilateral triangle iterates to a new equilateral triangle with continuously decreasing side length.

AVASI=N

Isosceles triangles with the two equal sides shorter than the third side and scalene triangles iterate eventually to excircle
radii that do not form a viable triangle.

Note that a right triangle a, b, c (c > b > a) yields a set of a’, b’, and ¢’ values that do not yield a viable triangle after one
iteration (see proof below Table).

Right Triangle Radius Excircle A Radius Excircle B Radius Excircle C
3,4,5 2 3 6
5,12,13 3 10 15
20, 21, 29 14 15 35
8,15, 17 5 12 20
28, 45, 53 18 35 63
NA
>
~N
S
—
3
>
2 - - 2 2
‘I‘: Area=ab/2 = uv(u™ —v")
[\
b= (u2 - vz) or 2uv
, ab
triangle area > ab
Texcircle sidea = s —a T~ a+b+c 2a=b+c—a
(=)-3
, ab
triangle area > ab

Texcircle side b = s— b (a+b+€)_2b_a+c—b




M. D. Gernon, 2/8/2024

_ ab
triangle area VA ab
Texcircle sidec = s — C T a+b+c 26:a+b—c

)7

We need to prove; c'">a +b
ab S ab N ab

a+b—c b+c—a a+c—b

1 1 1

> +
a+b—c b4+c—a a+c—0>b

41

(a+c—b)b+c—a)>(a+b—c)(a+c—b)+(a+b—-c)(b+c—a)

c? —(a%? +b?) + 2ab > a® — b? —c?> + 2cb + b? — a® — c? + 2ca

c? —c?+2ab > —2c*+2ch + 2ca
2ab > 2ca — 2¢* + 2cb
ab>c(a+b—c)
2uv(u? —v?) > (W? + v?)Quv + u? — v? —u? —v?)
2uv(u? —v?) > (u? + v3)Quv — 2v?)
2vud — 2uvd > 2vud — 2u?v? + 2uvd - 2v?

0 > 2uvd — u?v? — p*

UZ
O>uv2(2v—u——>

u
02
0O>2v—u——
u
2
u+—>2v
u
u v
—4+—->2 u>v
v ou
v+a %
+ > 2 a>0 v>0

v v+a
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(v + a)? + v > 2v(v +a)

2v% + 2va + a? > 2v?% + 2va

Appendix Ill: The Largest Triangle Fitted into the Center of Merged Circles:

The challenge here is to find the largest triangle that can be fit into the area between three circles pushed together until
they just touch (referred to herein as “merged”). The graphic below shows three merged circles of radius equal to 3.5
arrayed on a 7, 7, 7 equilateral triangle. The total area available for placement of a triangle is shaded black. We can
calculate the black shaded area fairly easily (recall that the angles inside an equilateral triangle are all 60°).

10

Black Shaded Area = A = Area Triangle — Area Circles Inside Triangle

4 hl mr?  hb—mr?  (6.062177826)(7) — n(3.5)?
2 2 2 ° 2

Step 1: Determine the three vertices of the triangle. For illustration, determine the vertices of the triangle
associated with merged circles having radii R1 = 4, R, = 6, and R3 = 10. The length of triangle sides a, b, & c are:

Ri+R,=a=4+6=10
R,+R;=c=6+10=16

= 3.950734776

(h, 1)

(0,0) b (14, 0)
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The first vertex for the center of the R1=4 circle is placed at the origin (0, 0). The second vertex for the R3 = 10
circle is placed at coordinates (14, 0). To find the coordinates of the third vertex (center of the R, = 6 circle),
one must calculate h & I.

/ ‘-.\ ™

~

I a? +b%—c? 10%4+14%—-16* 40 _ | 428571429
B 2b B 2(14) 28 7

2

40
h=+a%?-12= [10% - (ﬁ) = 9.897433186

The coordinates of the third vertex are (1.428571429, 9.897433186).

Step 2: Determine the three angles in the triangle.

'\
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- (h)_ _ (9.897433186
Yy = arcsin 7 = arcsin 10

h 9.897433186

= in(—) = J = 38.2132107°
4 arcsm(c) arcsm( Te )

' = 180° — 81.78678905° — 38.2132107°

) = 81.78678905°

14
10
6
—7/ circle 3
XA
2
ircle 1)
-8 - .2 ) /) 20
-6
-1
Step 3: Calculate the half angles.
0= %/= 40.89339453°
Q' = % = 19.10660535°
o =¥ = 300

2
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Step 4: Determine the points of greatest “intrusion” of circles 1, 2, & 3 into the interior of the merged circles
with the half angles.

s

| lsin (@)

x coordinate of circle 1 intrusion = (R,) cos(@) = 3.02371579
y coordinate of circle 1 intrusion = (R,) sin(@) = 2.618614677
x coordinate circle 3 intrusion = b — (R3) cos(@') = 4.550888175
y coordinate circle 3 intrusion = (R3) sin(@") = 3.273268353

To find the coordinates of the maximum intrusion of circle 2, one must first rotate the third vertex by the
complement of v, in this case 8.21321095°, counterclockwise. We know that this will place the vertex at the
coordinates (0, a).

x(rotated)] 10
ly(rotated) B [10]

We next carry out the following calculation:

x(new)] [0+ Rysin(¢/") 1 _[0+(6)sin(30°) 1 3
ly(new)l - [10 - RZCOS(l//")] B llO — (6)cos(30°)l B [4.803847577]

Rotate the point clockwise by the complement of y to get back to the original coordinate system:

lx(final)l_lcos(8.21321095°) sin(8.21321095°) [ 3 ]
y(final)| — [—sin(8.21321095°) c0s(8.21321095°)] 14.803847577

IX(final) _ [3.655493914
y(final) 4.326004599

x coordinate circle 2 intrusion = 3.655493914
y coordinate circle 2 intrusion = 4.326004599

Step 5: Determine the straight lines which incorporate the line segments that are the sides of the greatest
area triangle. The slopes of these lines are the negative inverse of the slopes of the lines from the circle
centers to the points of maximum intrusion (one can also use the center of the incircle).

Circle One Line Slope = tan(@) = tan(40.89339453°) = 0.8660254
Circle One Perpendicular Line Slope = —1.154700543
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This line includes the point of maximum intrusion.

y=mx-+b

2.618614677 = (—1.154700543)(3.02371579) + b
b = 2.618614677 + (1.154700543)(3.02371579) = 6.110100942
y = (—=1.154700543)x + 6.110100942

Circle Three Line Slope = —tan(@’') = —tan(19.10660535°) = —0.34641016
Circle Three Perpendicular Line Slope = 2.886751346
y=mx-+b
3.273268353 = (2.886751346)(4.550888175) + b
b = 3.273268353 — (2.886751346)(4.550888175) = —9.864014212
y = (2.886751346)x — 9.864014212

The easiest way to calculate this slope is by direct calculation.

4.326004599 — 9.897433186

Circle Two Line Slope = 3655493914 — 1428571429 — —2.501851153

Circle Two Line Perpendicular Slope = 0.399704034

y=mx-+b

3.655493914 = (0.399704034)(4.326004599) + b
b = 4.326004599 — (0.399704034)(3.655493914) = 2.864888935
y = (0.399704034)x + 2.864888935

Step 6: Calculate the intersections of the straight lines derived in the previous section.

y = (—=1.154700543)x + 6.110100942
y = (2.886751346)x — 9.864014212
(4.041451889)x — 15.97411515 = 0

X = 3.952568432 y = 1.546068028

y = (—1.154700543)x + 6.110100942
y = (0.399704034)x + 2.864888935
(1.554404577)x — 3.245212007 = 0

x = 2.087752478 y = 3.69937204
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y = (2.886751346)x — 9.864014212
y = (0.399704034)x + 2.864888935
(2.487047312)x — 12.72890315 = 0

x = 5.118078408 y = 4.910605521

Step 7: Determine the length of the triangle sides.

length = \/(y2 — y1)? + (xz — x1)?
length = \/(1.546068028 — 3.69937204)? + (3.952568432 — 2.087752478)?
length = 2.848553453 = a

length = \/(1.546068028 —4.910605521)? + (3.952568432 — 5.11807840)?
length = 3.263427955 = b

length = /(3.69937204 — 4.910605521)2 + (2.087752478 — 5.118078408)2
length = 3.560691817 = ¢

Step 8: Determine the area of the triangle.

a+b+c
Area = \/s(s —a)(s — b)(s — ¢) s = ———— = 4.836336613

Area Enclosed Triangle = 4.391970313

Step 9: Determine the total area enclosed within the merged circles.

(9.89743318)(14) /81.7867890° . (382132107° . /60 ,
A= 2 _( 360° )” _< 360° )”(10) _(360°)”(6)

A =69.2820323 — 11.41959003 — 33.34731722 — 18.84955592 = 5.66556913

o

Step 10: Determine the % of available area consumed by the enclosed triangle.

4.391970313
% Area Consumed = C 66556913 (100) = 77.52%

An Excel sheet was composed to illustrate the “greatest area triangle” that fits into the area between merged
circles. See the graphic immediately below for three circles of radii = 4, 6, 10 centered on the vertices of a 10,
14, 16 triangle, and see the graphics following the 10, 14, 16 triangle for visualization of the greatest area
triangle inserted into a few other merged circle combinations superimposed on triangles.
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14

10

-10

-14

Inner Area Consumed = 77.41%
Area Big Triangle = 42.79
Area Inner Triangle = 2.81

Inner Triangle: 2.55, 2.35, 2.81

48
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. . R1=2
5,12,13 Right T 1
ight Triangle R2 =3
14 R3 =10

Inner Area Consumed = 78.19%
Area Big Triangle = 30

-14
Area Inner Triangle = 1.43
Inner Triangle: 1.57, 1.85,2.18
21, 3, 21 Triangle
14
10
6
-12 -8 -4 ’( 8 12 16 20 24
Inner Area Consumed = 79.15%
-6 Area Big Triangle = 31.42
Area Inner Triangle = 0.68
-10
Inner Triangle: 1.17,1.59,1.17
-14
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10, 14, 21 Triangle R1=15
R2 =85
R3 =125

2 -8 &
Inner Area Consumed = 79.20%
Area Big Triangle = 59.88 N
-6 Area Inner Triangle = 2.22
-10
-14
Inner Yriangle: 1.53,2.97, 3.04
R1=9 " | 17,10, 9 Triangle
R2=8
R3=1 14
10
6
2
2 -8

-14

M
@®

Inner Area Consumed = 79.54%
Area Big Triangle = 36
Area Inner Triangle = 1.19

Inner Triangle: 2.32, 2.30, 1.06

50
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See the diagram of three merged circles below. Within the outer triangle (A = R1 + Rz, B =R1 + R3, C =R, + R3) whose
vertices are the centers of the three merged circles there is another triangle whose vertices are the three points of
contact between the merged circles (see the blue shaded area in the diagram). The side lengths of the inner triangle can
be calculated by the three equations below the diagram; the inner triangle is a, b, c.

af?

cl2

r r
= R, sin {arctan (R_)} = R, sin(0) L; = Ry cos {arctan (R_)} = R, cos (0)
1 1

= R, sin {arctan (RL» = R, sin(Q) L, = R, cos {arctan (RL)} = R,cos (0)

2 2

N[ NS NS

r r
= R3 sin {arctan (R_>} = R3sin(y) L3 = Rz cos {arctan (R_>} = R3cos ()
3 3

Within the inner triangle, there is another triangle that is the greatest area triangle that can fit in the space between the
merged circles. See the diagram below for the locations of the main triangle whose vertices are the centers of the
merged circles (grey, blue, & tan area), the inner triangle whose vertices are the contact points of the merged circles
(blue & tan area), and the triangle of maximum area that fits inside the area between the merged circles (tan area).

Note that the “maximum area” triangle is similar to but smaller than the “inner” triangle. Note also that the incircle of
the “maximum area” triangle contacts the merged circles at the same point where the “maximum area” triangle contacts
the merged circles; this is guaranteed by the fact that the “maximum area” triangle’s sides are tangent to the merged
circles at the points of greatest intrusion into the space between the merged circles while the “maximum area” incircle is
tangent to the sides of the triangle at these same points. Developing a more compact calculation of the area of the
“maximum area” triangle requires determining the relationship of the “maximum area” triangle to the similar but larger

“inner” triangle.
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The distances (di, d;, & ds) between the sides of the inner triangle and the sides of the maximum area triangle are given
by the equations below:

r
di=R,—L; =R;—R;cos {arctan (R_>} = R; — Ry cos(0) = R,{1 — cos (6)}
1

r
d,=R,—L, =R, — R, cos {arctan (R_>} =R, — R, cos(®) = R,{1 — cos (0)}
2
r
d; = R; — L3 = R; — R5 cos {arctan (R_>} = R; — R3 cos(yw) = R3{1 — cos (y)}
3
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Here is a relationship of angles within the inner triangle. The angles inside the inner triangle are w + 0, v + ¢, and 0 + ¢.

As the maximum area triangle and the inner triangle are similar, the angles inside the maximum area triangle must also
bey+0,y+¢, and 0+ ¢.

¢+6

y+06

The total area of the space inside the merged circles (Ainsi) is (angles in degrees):

Ainsi = Area A, B, C Triangle — n{(Rl)z (ﬁ) — (R)? (ﬁ) — (R3)? (%)}

360 360
A+B+C
A:R1+R2 B:R1+R3 C:R2+R3 S:T
A+B-C A+C—-B B+C-A
A e

Area A, B, C Triangle = \/S(S —A)(s—B)(s—0)

For the area of the inner triangle (a, b, c) using a, b, and c as calculated above:

a+b+c
Area a, b, c Triangle = \/s(s — a)(s — b)(s — ¢) S=——0—
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By the Descartes Circle Theorem, the radius r of the incircle of the maximum area triangle, note that this circle can also
be regarded as the fourth circle within the interior of three kissing circles, is given by:

_ (R (R2)(Rs)
(R1R2) + (R1R3) + (R2R3) + 2/ (R1)(R2)(R3)(Ry + R, + R3)

Recall the formula for the incircle (applied here to the maximum area triangle):

r

A Ama + Pma + Cma
r=; A=rs s = >

We can check that the area of the maximum area triangle as calculated from the Excel sheet using points and slopes has
an incircle radius equal to that indicated by the Descartes Circle Theorem. One can use the (13, 14, 15) scalene triangle
(R1=6, R2=7, R; = 8). The Excel sheet indicates the following:

Maximum Area Triangle leg lengths = 3.572816361, 3.728228119, 3.840662185
Maximum Area Triangle value of semiperimeter (s) = 5.570853332

Maximum Area Triangle Area (A) = 5.957007816

Maximum Area Triangle calculated Incircle Radius = A/s = 1.069316936

_ (6)(7)(E)
(6)(7) + (6)(8) + (7)(8) + 2/ (DB (6 + 7 +8)

Given the propagation of errors in the calculation of this value from points and slopes, the two values are “adequately”
equal. We can carry out the same comparison with a (10, 13, 17) scalene triangle (R1 = 3, R2= 7, R3 = 10). The Excel
sheet indicates the following:

= 1.070063694

r

Maximum Area Triangle leg lengths = 2.428461722, 3.243895614, 3.400526584
Maximum Area Triangle value of semiperimeter (s) = 4.53644196

Maximum Area Triangle Area (A) = 3.747028517

Maximum Area Triangle calculated Incircle Radius = A/s = 0.825984009

_ (3)(7)(10)
(3)(7) + (3)(10) + (7)(10) + 2{/(3)(7)(10)(3 + 7 + 10)

T = 0.837939293

Again, the values are close. We can get better agreement by removing some of the approximation error via use of an
equilateral triangle. Here are the values for a (7, 7, 7) equilateral triangle (R1 = 3.5, R, = 3.5, R3 = 3.5). The Excel sheet
indicates the following:

Maximum Area Triangle leg lengths = 1.875644347, 1.875644347, 1.875644347
Maximum Area Triangle value of semiperimeter (s) = 2.813466521

Maximum Area Triangle Area (A) = 1.523356749

Maximum Area Triangle calculated Incircle Radius = A/s = 0.541451884

_ (NN)
(D) + (DD + (D) +2/DDDT +7+7)

As expected, removal of the rounding errors results in these two values becoming exactly equal. Here is a comparison of
these values for a (7, 7 10) triangle: r (Excel sheet) =0.52600177; r (Descartes) = 0.531972647. The difference in these
two values (Excel versus Descartes) increases with the irregularity of the triangle. It is sufficient for an engineer to
assume that the Excel method and the Descartes Circle Theorem return the same value.

r = 0.541451884
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Graphics showing the (13, 14, 15) and (10, 13, 17) maximum area triangles:

Q
O

H

=

13,14,15 Triangle

-10

-14

H
(s <]

H

10,13,17 Triangle

55
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Appendix IV: Families of Pythagorean Triangles:

This section (appendix V) is partially based on the online publication “The Pythagorean Tree: A New Species”
by H. Lee Price (Cornell University; online publication arXiv:0809.4324). This publication has also been
summarized on YouTube by Burkhard Pollster. The ideas in this section relate to families of right triangles.

%)

2

2uv or (u

Area = ab/2 = uv(u - v

)

a-=

-

b= (u2 — v2) or 2uv

Consider the following 2X2 number matrix;

Nng ng u+v u
If “u—v” is a positive odd integer and “u—v” & “v” are coprime positive integers, then “u” and “v” fulfill the

requirements of the two integers necessary to generate a primitive Pythagorean triple (i.e., one is odd and one

oaw.on

is even and they are coprime to each other). If “v” is even, then “u” is odd. If “v” is odd, then “u” is even. If “u
—v” and “v” are coprime, then “u” must have no factors in common with “v”, and “u” & “v” are thus
necessarily coprime. Note also that “u” must necessarily be greater than “v”.

If u & v are coprime integers (u > v) with one being even and the other odd, then a primitive Pythagorean triple
can be generated as (note that u? — v? & 2uv are the legs of the right triangle corresponding to the triple):

u?—v?, 2uv, u? + v2

Observe in the 2X2 matrix above:
niXxng=(u-—v)(u+v)=u2-v?

2XNyXN3=2uv
(ntxn3)+(N2xng)=(u=v)(u)+(V)(u+v)=u2=vu +vu+vZ=u?2+Vv?

Area =ni X na X N3 X ng =(u—v)(v)(u)(u + v) = (uv)(u? = v?) = (height x base)/2

e el =lavo ol
ng n3l lu+v u

In summary:
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The integer “u—v” is odd and the integers “u—v” & “v” are coprime, then:

Odd leg of right triangle = nina = (u—v)(u + v) = u? = v?

Even leg of right triangle = 2n;n3 = 2(v)(u) = 2uv

Hypotenuse of right triangle = ninz + nana = (U= v)(u) + (V)(u + v) = u? + v2
Area of right triangle = ninansna = (u = v)(v)(u)(u + v)=(uv)(u? = v?) = ab/2

Recall Heron’s Formula for the area “A” of a triangle. The length of the sides of the triangle are a, b, & c. The
semiperimeter “s” of the triangle is defined as the sum of a, b, & c divided by 2. The derivation of Heron’s

Formula is straightforward and can be found online (Wikipedia, for instance).

Area = A = \fs(g —a)(s—=b)(s—0)

b

A more interesting aspect of the matrix above is how conveniently it allows for calculation of the incircle and
excircle radii of a right triangle. See the diagram below for a visualization of the incircle of an arbitrary triangle:

The radius of the incircle is given as “r”. Examination of the figure reveals that the radius of the incircle is equal
to:
, (x+y+2z) X+y+z A
Area of Triangle = A = > r=Sr S=——"b r=-—
S

Referring back to Heron’s Formula:

. A s -N6-2) _ [s6C=x)(E-»(E-2)
s S B s2

(s =) =-y)(s—-2)

S
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e el =lavo ol
ng n3l lu+v u

Referring back to the 2 x 2 matrix:

A NNy N3Ny 2N NyN3Ny
r p— —
S MNy +2npng +myng + My nyny + 2nynz + nyng + nyny
2
A 2(u — v)(W) (W) (u + v) 2(uv)(u? — v?)
Y = — = =
s wW—v)(u+v)+2ww)+ uw—-—v)(w) +v(u+v) 2(u? + uv)

A 2uw)(u? —v?)
T s 2(u? + uv) = @ =n)@) =mn;

See the diagram below for visualization of one of the three excircles of a triangle. The excircle shown is the
one associated with side “x” of the triangle. Note that r refers to the triangle’s incircle radius while ry refers to
the radius of the triangle’s x-side excircle:

1, = excircle radius r = incircle radius

rxy er . rxx
Area of colored area = - + - = Area of blue triangle + -
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n(y+z—x +z—x
4¢) > )=Area of triangle = A = sr S/ > )= (s —x)
ST A
(s —x)=A=sr T = =

(s —x) = A= s -0 -y)(s—2)
. :\/S(s—x)(s—y)(s—z):\/s(s—y)(s_z)

(s—x)2 (s —x)
_xty+z W -v?)+2uw + W +v?)
Tx_(y+z—x)r_2uv+(u2+v2)—(u2—v2)(u_v)(v)
2u? + 2uv u? + uv u(u + v)
rx:2v2+2uv( )(U)_ (u—v)(v)— o )(u—v)(v)

=== )®) = - v)W = mn;

I =mMn3
As u? — v? was the value assigned to x, the x side here was the n;n, odd leg

T, corresponds to the excircle for the nyn, odd leg of the right triangle

Go back to the step where a specific side of the triangle is inserted into the formula and calculate the excircle
radii for the even leg of the primitive right triangle:

xry+z _ W =v?) + 2uv + (W +v)
V= (x+z—y) (u —v2) + (u? +v2?) — (U—v)(v)
" = ;Z + 2uv — (- v)(v) = uEZ u(u + v) z; (w—1)W) = (u+v)(¥) = nyn,

1, corresponds to the 2nyn; even side of the right triangle

Finally, calculate the radius for the excircle of the hypotenuse:

2(area of triangle)  2u—-v)(W)(W)(u+v)
(x+y—2) (w2 —v2) 4 2uv — (u? 4+ v?)

2W? —v) ()W) @ -vHW)  u-v)(u+vu

2uv — 2v? - (wu-v) (u—v)

T, = =u(u + v)
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r, = (wW)u+v)
(W (u +v) =ngn,
1, corresponds to the nyns + n,n, hypotenuse of the right triangle

x+y+z W =) + 2uv + (W® +v?)

Tty @ —v)f2uw-(+v )(u—v)(v)
2
T, = ;ZUJ:ZZI:; (u—-v)(w) = %(u —v)(v) = (W) (u+v) =nzn,
Summary:

o, .n

Choose “u—v” to be an odd integer and choose “v” coprime to “u—v”.

[nl nzl _ [(u — V) v]

ng N3 (u+v) u

length of odd leg of right triangle = nyn, = u? — v?

length of evenleg of right triangle = 2n,n; = 2uv

length of hypotenuse of right triangle = n;n; + nyn, = u® + v?
Area of right triangle = nin,nyn, = uv(u? — v?)

incircle radius = nyn, = (u — v)(v)

excircle radius of odd leg = nin; = (u—v)(u)

excircle radius of evenleg = n,n, = (vV)(u + v)

excircle radius of hypotenuse = nyn, = (u)(u + v)

Families of Pythagorean Triples:

Note that the excircle of a given right triangle can serve as the incircle of a larger right triangle:

[3ﬂ+2b’ 2a+b 3a+4b 2a+3b
a+2b

If “@” is odd and “a” & “b” are coprime, then each of the “children” of the “parent” right triangle have an odd
number in position ni1 and the numbers in position n1 & n; are coprime. If the “parent” triangle is a primitive
right triangle, then the “child” triangles are also primitive right triangles. The example below shows the
“children” of the primitive 3,4,5 right triangle.
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512,13 21,20,29 15,8,17
[1 2] 3 2‘ [3 1
> 3 7 5 5 4

Fermat Child

Pythagoras Child 34,5 Plato Child

Note that for the “Plato child”, the hypotenuse and the larger leg differ by two. For the “Fermat child”, the two
legs differ by one. For the “Pythagoras child”, the hypotenuse and the larger leg differ by one. These relations
will continue so long as one continues to take the same type of “child”. It is possible to work back from an

arbitrary primitive right triangle to the base 3,4,5 triangle (see graphic below). The triangle on the top is the
larger “child” triangle. The triangles below are the possible “parent” triangles.

a b 7
la+2b a+ b
[ a b—al [2b—a a— D] [a—Zb b ]
2b —a b L a b . a a—>b
b>a 2b>a>D>b a>2b

oun

Note that “a” can’t equal “2b”, as “a” is odd (“b” can equal “2a”). Also, “a” can’t equal “b”, as this would
require a matrix entry of zero. One simply looks at the “a” and “b” integers in the matrix and determines what
type of child itis. Next apply the appropriate matrix to find the parent. See the following example:

20907,16324,26525

207 154

2b>a>b "Fermat Child"
505,5088,5113
[ 5 48]
101 53
b>a "Pythagoras Child"
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b>a

455,4128,4153
[5 43]
91 48
"Pythagoras Child"

b>a

405,3268,3293
[5 38]
81 43
"Pythagoras Child"

b>a

355,2508,2533
[5 33]
71 38
"Pythagoras Child"

b>a

305,1848,1873
[5 28]
61 33
"Pythagoras Child"

b>a

b>a

255,1288,1313
[5 23]
51 28
"Pythagoras Child"
205,828,853
[5 18]
41 23
"Pythagoras Child"

62
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155,468,493
51 s

b>a "Pythagoras Child"

105, 208, 233
[251 183]

b>a "Pythagoras Child"

55,48,73
[151 533]

2b>a>0b "Fermat Child"

512,13
1 2]
5 3
b>a "Pythagoras Child"

3,4,5
1 1]
3 2
"Base Right Triangle"

63

There can’t be a smaller integer right triangle than the “base right triangle”, as the incircle radius of the “base

right triangle” is one and there is no positive integer less than one. For the “base right triangle” to have a

“parent”, one of the excircle radii of this hypothetical parent triangle would necessarily be equal to one, and
one of the two following matrices is therefore necessary.

HE{R
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PX 01 [1 O [—1}{@1
1 X D" 0
Both of these possible parent matrices contain a zero, and thus one leg of these hypothetical triangles will be

of zero length. Neither of these matrices form a triangle. Thus, no integer right triangle smaller than the 3,4,5
“base right triangle” is possible.

Proof all primitive Pythagorean Triples are generated as “children” of the base 3,4,5 triangle:

Any primitive right triangle (i.e., primitive Pythagorean triple) can be represented by a 2X2 matrix. Choose two
coprime integers u & v with one being even and one odd and with u >v. The integer “u—v” is odd. The odd
leg of the Pythagorean triple is equal to u> —v2. The even leg of the Pythagorean triple is equal to 2uv. The
hypotenuse of the Pythagorean triple is u + v2. All integer primitive Pythagorean triples can be created this
way. Take any integer primitive Pythagorean triple represented as a 2 x 2 matrix:

[n1 nz] _ [u—v %
ng ng u+v u
odd leg of right triangle = nyn, = u® — v*
even leg of right triangle = 2n,n; = 2uv
hypotenuse of right triangle = nyn; —nyn, = u? + v?
incircle radius of right triangle = nin,
area of right triangle = nyn,nyn, = uv(u — v)(u + v)
excircle radius of odd leg of right triangle = nins

excircle radius of even leg of right triangle = n,n,
excircle radius of hypotenuse of right triangle = nyn,

Such a matrix can be converted to a smaller parent matrix which can in turn be converted to a still smaller
parent matrix until it reaches the base 3,4,5 right triangle. Any primitive Pythagorean triple larger than the
base 3,4,5 triple can be reduced to a smaller Pythagorean triple by converting it to its parent. By infinite
descent; any integer primitive Pythagorean triple with an incircle radius greater than one can be reduced to a
smaller integer parent triple and this process can be repeated until it reaches the base 3,4,5 triple, and no
integer Pythagorean triple smaller than the base 3,4,5 triple is possible.

Assume that the “child” triple is primitive. There are three possible parents:

u—v v

[u+v u
[u—3v % ] 3v—u u—Zv] u—7v 2v—u]
u—v u-—2v u—7v % 3v—u %

u—v > 2 20>uUu—v>v v>u—v
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o, n “u..n

If “u” & “v” are coprime, then “v”, “u—2v”, & “2v—u” are coprime. If one of “u” & “v” is odd and the other
even (i.e., “u” and “v” have opposite parity), then “v” and “u— 2v” have opposite parity and also “v” and “2v —
u” have opposite parity. Thus, the parent of a primitive Pythagorean triple is also a primitive Pythagorean

triple.

Rational Approximation of the Square Root of 2:

Consider the Fermat leg of the Pythagorean triples generated with a 2X2 matrix. Here are the first five triples
generated:

1 1
3 2
3,4,5
3 9
7 5.
21,20,29
7 1]

17 12
119,120,169
[17 12]

41 29
697,696,985
[4]_ 29]

99 70
4059,4060,5741
[99 70]
239 169
23661,23660,33461
[239 169]
577 408

137903,137904,195025
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Note that the Pythagorean triples generated in the Fermat leg of this method have two legs that differ in

magnitude by one. As these Pythagorean triples increase in magnitude, the two legs approach equal length.
In the infinite limit, these two legs are equal in length. Thus:

x2 4 y2 = 22

RN R

5 xl}i]r_r)loo\/x2+y =\/§\/x—=\/§\/?
y lim (E) = lim (E> =+/2
X,y—00 \X x,y—>0 \y

Thus, the value of the hypotenuse divided by either leg from a Pythagorean triple in the Fermat leg is an
approximation of the square root of two. Using the first seven triples:

leg 1 leg2 | Hypotenuse (HypotenlL)Jse)/(Leg % Error (Hypotenuse)/(Leg 2) % Error
3 4 5 1.666666667 17.8511 1.25 11.6117
20 21 29 1.45 2.5305 1.380952381 2.3519
119 120 169 1.420168067 0.4210 1.408333333 0.4158
696 697 985 1.415229885 0.0719 1.413199426 0.0717
4059 4060 5741 1.41438778 0.0123 1.414039409 0.0123
23660 23661 33461 1.414243449 0.0021 1.414183678 0.0021
137903 | 137904 195025 1.41421869 0.0004 1.414208435 0.0004

We can compare this approximation to one obtained with an infinite continued fraction:

1
V2 =1+

1
1

2+
2 +

2+

1
1
2+r

The Table below illustrates a convenient way to generate partial quotients for a continued fraction. Here are
the first seven partial quotients:

1 2 2 2 2 2 2
0 1 1 3 7 17 41 99 239
1 0 1 2 5 12 29 70 169
Partial 239/169
1/1 3/2 7/5 17/12 41/29 99/70
Quotient / / / / / /
i 1.414201183
Decn:nal 1 15 1.4 1.416666667 1.413793103 1.414286
Quotient
% Error 29.2893 6.0660 1.0051 0.1735 0.0297 0.0051 0.0009
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The value obtained with the Fermat leg of the Pythagorean triples converges a bit faster per step, but the
continued fraction converges with significantly smaller fractions per step. Also, the continued fraction method
involves significantly fewer calculations per step. The continued fraction method is better.

Appendix V: Derivation of the QM > AM > GM > HM relationship from Axioms:

AXIOM 1 & AXIOM 2: Parallel Line Postulate of Euclid; the sum of the three internal angles of a triangle is equal
to m radians (180 degrees). This is an alternative statement of Euclid’s parallel line postulate. Note that the
Pythagorean Theorem extends to an arbitrary number of dimensions with many proofs available.

¢ + © + W = 1rradians

b

Derivation of cosine of sum of angles by AXIOM 1 (sum internal /’s of A = 180 degrees):

sin(a + ) = sina cos 3 + cos a sin B.
cos(a + ) = cosa cos B - sin a sin B. o
@ sin
£ P
w
3
1 0
@ S
+ L .
3 Sinc.sin
=
w
Cosp "
wm
O
O
3
=
wm
B
L
o cos(a + B) J

Y

COSa COS B
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Derivation of the Law of Cosines from the Pythagorean Theorem:

x?+ 1% = a? y? + 12 = b?
a’ +b? = 21 + x* + y?
ct=(x+y)?=x*+y%+2xy
c? —2xy = x% + y?
a’ + b? = c? + 21% — 2xy
[l = acos(f) = bcos(8) x = asin(B) = bsin(d)
a’ + b? = c? + 2abcos(B)cos (8) — 2absin(B)sin ()

a’ + b%? = ¢? + 2abcos(B + &) = c? + 2abcos(9)
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Derivation of the length of an “n” dimensional vector:

0,

N Y. &
e

|A| =[x + yf

2
Bl = || [x2+y?) +22 = |} +y} +2}

y

The length of a vector in 2D (e.g., vector A) is given by the Pythagorean Theorem. If one extends a 2D vector
into 3D space (e.g., vector B), one gets the new length by another application of the Pythagorean Theorem.
Now imagine the 3D vector moved into a 2D space obtained by rotating the coordinate system and again
extending this formerly 3D vector into a new dimension “d” (effectively a 4D vector). The new length is
obtained by another application of the Pythagorean Theorem, and the process is continued on to “n”
dimensions.

V|= |x2+y2 +22 +d? + - +n?
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Derivation of the Cauchy-Schwarz Inequality via Pythagorean Theorem & The Law of Cosines:

5

Consider n-dimensional vectors:

/sza+ya+za+---+na
§=xb +yb +Zb+’“+nb

A—B=((xg—xp)+ Wa—Yp)+(2g—2p) + -+ (Mg—1nyp)
[A=B| =/ (xg — %)% + Vo — ¥p)? + (24 — 2p)? + =+ + (ng — Np)?

Apply The Law of Cosines:

Al = |x24+y2+ 22+ +n?

Bl =

|A|? + |B|?> = |A — B|? + 2|A]|B|cos (8)
2x0Xp + 2VaVp + 2242 + -+ + 2ngnp, = 2|A||B]|cos (6)

AB = xyxp + YaVp + 242 + - + ngny, = |A||B|cos (6)

>
Sl

| > A-B = x,%p + VoVp + 242p + -+ + Ngny,
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Proof that Quadratic Mean > Arithmetic Mean via The Cauchy-Schwarz Inequality:

data = {x{,Xx,Xx3,...,X,} = "n" dimensional vector

VX2 +x2 +x2 4 -+ x?
n

Quadtric Mean = QM =

x1+x2 +X3+"'+xn

Arithmetic Mean = AM = "

Consider the dot product of an “n” dimensional vector of all ones with our data vector:

{x1,%5,%3, ., %} {1,1,1, ..., 1} =x; + x5 + x5 + -+ x
1{1,1,1, ..., 1} = Vn

{1, %5, X3, e, X }| = \/xlz +x% + x5+ -+ x2

\/ﬁ\/x12+x§+x§+---+x%2x1+x2 + x5 + -+ xp

n(xf +x3+x5+-+x5) = (X + x5 + x5+ + x,)?

n(xf + x5+ x5+ +x5) (g +x+x3 4+ x)?

le

le

(xf + x5 + x5+ +x5) o |Gt txs + 4 xy)?
n - n?
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(x12+x§+x§+---+x,%)>(x1+x2 +x3 4+ 4 xp)
n B n

QM = AM only when all values of x; are identical

Limited Proof that the Arithmetic Mean is greater than or equal to the Geometric Mean:

Limited form of the Thales Central Angle Theorem:
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Limited proof that AM > GM:

+b
AM = ¢ > =r GM = +Vab
[ [ T
- = tan(0) = tan(y) O+ y = 5 tan(8) = cot (y)
[l b

As | < r with equality onlywhena=b=r AM = GM
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Full Proof that the Arithmetic Mean > Geometric Mean:

] ] X1+xZ+X3+‘“+Xn
Arithmetic Mean = AM = ~ =«

1
Geometric Mean = GM = (x1XpXx3 " Xp)n

“" ”

With “a” being equal to the arithmetic mean, pick two values of x; such that one is greater than o and one is
less than a.. Assume that x1 and x, meet this criterion with x; being great than o and x1 being less than a, as
these can be assigned arbitrarily. If there is no value of x; greater than o with at least one different value of x;

obligatorily less than a, then all the values of x; are equal to a and “AM = GM”. Substitute the values of “o” &
“x1+ x2—a” into both the AM and GM:

a+ Xy +x,—a) +x3+--+x
AM = (1 2 n) 3 n:a

1 1
GM = {a(x, + x; — a)x3 = x, )7 = {(ax, + ax; — a®)xz = x,}n

ax, + ax; —a? —x1x, = (x; — a)(a — xq)

x,—a>0 & a—x;>0 & ax, +ax, —a’ > x.x,

1

The geometric mean has been increased by this substitution while the arithmetic mean has remained the
same. Now reassign values:

Let x; + x, — a = new value of x;

Reassign x5 through x,, as x, through x,_4

a+x1+x2 +X3+"'+xn_1_

New Arithmetic Mean =
n

a+xy+x,+x3++x,i=na—a=an—1)

x1+x2+x3+"’+xn_1_

New Arithmetic Mean = —

So now one can repeat the process. There must be at least one value of x; greater than a and one value of x;
less than o unless all the values of x1 through xn-1 are equal to o.. We arbitrarily assign the value of x, to be
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greater than o and x1 to be less than a.. One continues the process over and over until all the values of x; have
been converted to o.. Note that the final two values, assuming they are different from a, will both be
converted to a.

x1+x, (@a+za)+(@a—za)
2 2 -
X1 +x,—a=a+zot+ta—zo—a=a

New Arithmetic Mean =

With each step, the geometric mean increases while the arithmetic mean remains the same. Ultimately, the
value of the geometric mean reaches a.

1 1
Increased Geometric Mean = (aaaaaa - a)n = (a™)n =«

Original Arithmetic Mean = «

The original geometric mean was thus less than or equal to the original arithmetic mean.

Proof that the Geometric Mean > Harmonic Mean:

1
Geometric Mean = GM = (x{XX3 ** Xp)n

. n
Harmonic Mean = T N T A T _|_..._|_i
X1 X, X3 Xn

Note that the harmonic mean is the inverse of the arithmetic mean of the inverses. The inverse of the
geometric mean of the inverses is given below:

1 1

& &) &)

Geometric Mean of inverses
1 / 1

Geometric Mean of inverses B ( 1 ) ( 1 ) ( 1 ) ( 1 )

X1/ \X2/ \X3 E

Sk

./
3|m
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1 1
Geometric Mean of inverses

By previous proofs:

1 1 1
= (X1 XpX3 X = GM

< ,
AM of inverses = GM of inverses

1
AM of inverses

The Weighted Average (Mean):

= HM < GM

A weighted average (mean) is convenient when handling data for large populations. For instance, an average
test score for a test graded on a scale of zero to one hundred (integers only) for 10,000 students will obviously
contain many instances of students with the same grade (pigeon hole principle). Going forward, let “m”
designate the value being averaged; in this case, the test grade. Rather than listing all the identical grades
individually, one can use a weighted average.

n; = number of data points with value m;

n
E n; = N = total number of data points
=
n n
: : : i=1 1M i=1NiMm;
Weighted Arithmetic Mean = M,, = —; =
The weighted average can be restated with fractions:
n
i=1 MM, n;
n N _ N
=1
Here is the weighted quadratic mean:
. . g nmg iy nym?
Weighted Quadratic Mean = Q,, = =

7 =
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n
i=1 nimi2
— = - 2
=1

Here is the weighted geometric mean (does not simplify as much as the others):

1
n =
Gp = ‘ ‘ n;m;
=1
Here is the weighted harmonic mean:
n
Hn = = =
1 N 1 1

. n-— . ni_ ._1xi_
1=1"" m; =1 m; 1= m;

Note that the use of a weighted average does not change the QM > AM > GM > HM relationship, as the

weighting factor can be taken out and replaced with an individual listing of the combined data points to give
the simpler form of the average. An example for illustration:

" Linm; 3(5)+4(6) 5+5+5+6+6+6+6
=

N 7 B 7
0. = =ammi _ 23)2+3(4)7 (32432442 447+ 47
" n=1 n; 5 5

Treating Data Points as Ratio Quantities:

One can keep track of units in all the different types of averages. Rather than averaging test scores as

numbers, treat them as a ratio, i.e., grade per person. If a student gets a grade of 80, then this is thought of as
80/person.

grade
non.m: 1(” peeple) rade
M, ==""""1— PETSOR — units of J

tn total #H-ofpeople person
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Some averaged quantities are normally thought of as ratios; such as a speed in miles/hour or price in
dollars/pound.

dollars
Q=1 M, i1 (1 ') Dound pound , dollars
= units of

rn N total-#-of-pounds pound

Here is the unit analysis for the harmonic mean of test grades thought of as grade/person.

M, =

N _ total # of people  total # of people
1 — 1 person
. i — = (# le) ———
i1 N m; (#people) grade (#people) grade
person
N _ people  grade
n oo 1 ~ (people)?  person
t=1"m, grade

Note that a weighted average can be based on differing amounts of either the numerator quantity or
denominator quantity of the ratio being averaged. One can determine an average price for differing numbers
of pounds at differing prices in dollars per pound. This is a weighted average based on differing amounts of
the denominator quantity (e.g., pounds in dollars/pound). Conversely, a weighted average price can be
obtained for differing amounts of dollars spent at differing prices; i.e., an average based on differing amounts
of the price’s numerator quantity (e.g., dollars in dollars/pound). For a weighted average of differing values
present in differing amounts of the denominator quantity, use the weighted arithmetic mean:

dollars
M. = i=q ym; _ (# pounds), (POUTld )i _ (dollarS)
noYr.on  total #of pounds  \pound average

For a weighted average based on different amounts of the numerator quantity, use the weighted harmonic
mean:

o Xan total $ spent
Hn = T = . 1
roni—— my ($ at price); S price
(pound)
total $ $
n —

($) (poundS) pound

i

average
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When to use the different types of averages:

The quadratic mean is used when both positive and negative numbers must be considered based on their
magnitude. The standard deviation for a population is a quadratic mean of deviations from the arithmetic
mean. The quadratic mean is an important concept when considering alternating current, though it usually
applied continuously with calculus.

The arithmetic mean yields the central value of a finite arithmetic series (i.e., mean = median). We will
designate the arithmetic mean (AM) as My, for the remainder of this paper. The arithmetic mean of the finite
sequence 3,6, 9, 12, 15 is equal to 9 (M = 9). If there are an even number of terms in a finite arithmetic
sequence, then the arithmetic mean is equal to the arithmetic mean of the central two terms. For instance,
the arithmetic mean of the finite sequence 3, 6, 9, 12 is equal to the arithmetic mean of 6 & 9 (i.e., 7.5). When
the arithmetic mean (M) is multiplied by the total number of data points (N), one gets the total sum of all the
data points.

i=1 my i=1 my X
M, = —; = NM, = n;m;
. : N
=1 i=1

The geometric mean yields the central term of a finite geometric series (i.e., mean = median). For instance,
the geometric mean of the finite geometric sequence 3,9, 27 81, 243 is equal to 27. If there are an even
number of terms in a finite geometric series, then the geometric mean is equal to the geometric mean of the
central two terms. For instance, the geometric mean of the finite sequence 3, 9, 27, 81 is equal to the

geometric men of 9 & 27 (i.e., \/(9)(27) = V243 ~ 15.6). The geometric mean should be used for data that
accrues geometrically, such as the average annual change of an investment fund. Negative numbers can’t be
used in geometric means. The value of terms to be averaged geometrically should all be positive. One must

convert a series containing negative terms to all positive values, possibly by converting the terms from values
representing change to values representing remaining amount. For instance, an investment that gains 30% in
year one, loses 20% in year two, and finally gains 15% in year three should be collated as 1.3, 0.80, 1.15 and

1 1
not as 30, -20, 15. The geometric mean of 1.3, 0.80, 1.15 equals {(1.3)(0.80)(1.15)}z = (1.196): = 1.0615
(average annual interest rate of approximately 6.15% yielding 19.6% gain after three years).

The harmonic mean yields the “full mediant” of a finite sequence of values wherein the numerators of all the
values in the series are made identical. The full mediant of a finite sequence of terms is obtained by dividing
the sum of the all the numerators by the sum of the all the denominators. Consider:

2222 2 2
3°5°9°10° 11’11
6 6(2)

10 11 11 3+5+9+10+ 11 + 11
2

N W
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Here is another example:

5 5(2)

~2/3.2/5 . 2/7 .3 ,2/11 2 _2 2 2
2 vt tzt—7 3tgtytdtq

Note that when the denominators form an arithmetic series, assuming a finite sequence of values wherein all
the numerators are equal, then the harmonic mean is equal to the central term in the series (i.e., mean =
median) or, in the case where there are an even number of terms, the mediant (equivalent to the harmonic
mean) of the central two terms.

HM

_|_

4 4(3) 12 6 3+3

5,8,11 14 5+48+11+14 38 19 8+11
3T3T3+t3
As previously shown, the weighted harmonic mean is used when one is calculating a weighted average with
weighting by differing amounts of the numerator quantity of the ratio values being averaged. Note that using
a weighted harmonic mean in this way provides a value which is identical to the arithmetic mean that would

have been obtained had the weighting been done by equivalent amounts (i.e., equivalent to the amount, not
the same value) of the denominator quantity of the ratio value being averaged.

HM

A speed in miles per hour is an example of a ratio value. If one wants a weighted average for different speeds
(miles per hour) traveled for differing amounts of time (hours — the denominator of the ratio value being
averaged), then one uses a weighted arithmetic mean.

n

t; = time at speedi s; =speedi T = totaltime = Z t;
i=1
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n n
M. = = tis; O USi
S NP T
=17 =

The harmonic mean is used when the ratio value is weighted by variable amounts of the ratio’s numerator
quantity (distance in miles for speed in miles/hour).

[; = distance at speed i s; = speed i L = total distance =

‘"'M -
o~

=1
n
o = i=1li L
e L
i=1iS_l. i=1iS_l.

Note that this harmonic mean is equal to the arithmetic mean that would be obtained if the weighting was in
times (hours) corresponding to the distances (miles).

If the weightings based on a denominator quantity are all equal, then the weightings can be replaced as
division by n (number of data points) yielding the simple arithmetic mean.

n
Iy 1 tiSi z 1
n = Si = _ZSL'
?—1 i nt; n &

If the weightings based on a numerator quantity are all equal, then the weightings can be replaced by a
numerator equal to “n” (number of data points) yielding the simple harmonic mean.

N = ?=1 li _ Tlli _ n
"gn 10 n 1
i=1lig S; L; 21—1 S; i=1g,

Measures of Dispersity:

The variance and the standard deviation are two common measures of the dispersity of a data set.

non,(M, —m;)? n n;(M, —m;)?
s = =1 ln n AN ol 5 el = stand.dev.
=11 N
:l=1ni(Mn - mi)z 7il=1 ni(Mn — mi)z

2 .
ST = = = varitance
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Another measure of dispersity known as the “Polydispersity Index” is used in polymer science. When a
polymer is produced, there will be a range of molecular weights (MW'’s) produced. The number average
molecular weight of the polymer can be calculated as:

n; = number of molecules (moles)with GMW of m;

N = total number of molecules (moles)

n.
X;n = number (mole) fraction of fraction = Nl

n

n n
M. = i=1im; i=1nimi_zx -
n — — — in'tt

i=1

The number average molecular weight is a traditional weighted arithmetic mean. One can also calculate a
weight average molecular weight as Mu:

n
NM, = z n;m; = total weight of polymer

i=1
n 2 n 2
1=1""1""" n 2 1=1""1""" n 2 n 2
M. = N _Zi=1nimi _ N _Zizlnimi =1 XMy
v Mn NMTl ?:1 nlml 7l:L=1 nlml ?=1xlml
N
v - Yiziimim; Y- (weight of fraction)m,
v NM,, (total weight of polymer)
n
M, = z XiwM;  Xiw = weight fraction
i=1

The weight average molecular weight is an average of the molecular weights weighted by their weight fraction
rather than the number fraction. Note that this type of “extended” average can be calculated for any ratio
guantity. Consider a similar set of weighted averages for a set of apple prices in dollars per pound for differing
weights of apples.
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p; = price of apples for fraction "i" in dollars /pound
w; = weight of apples for fractioni in pounds

w;p; = dollars spent to buy w; pounds at price p;

n
Z w;p; = total dollars spent = WM,
i=1

n
z w; = total weight of apples =W

i=1
n n n
M i=1 WiDi i=1 WiDj total dollars spent
— —_ = x . — -
" nw w Z . inPi total weight
1=

Xin = weight fraction of fraction

The weight average for this type of data set would be:

M,, = =

" " n
_ Xisawipibi  Xi—q(price of fraction)p; _ Z N
WM, (total price) LwPi

Xiw = price fraction of fraction

The weight average apple price is an average of the apple prices weighted by their price fraction rather than
their weight fraction.

Relationship of Mn & Mw to the variance:

n 2 n 2
2 i=1 (M, — my) i=1 (M, —m;) .
se = — = = variance
n 2 n 2 2
i=g (M —my)® Yy ny(My — 2Mym; + my)
- —
n 2 n n 2
§2 — Q=1 My _ iy mMy, X nym;

N N N
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2 2 2
ST i=1 My . = imMy, Xl nym;
M2 NM? N M2 N M2

2

(i)z _ =i 5 =1 My | Nisg um;

M, N NM,, NM,M,,
2
S M M
(—) =1-24+—=—7-1
M, M, M,
) =3
M,) M,
—~ = polydispersity index
M,
Appendix VI: The Analytic Triangle:
See the diagram below.
(&)
(]
h
b
a? + b2 — c2\* ¢ + b2 — g2\*
h = az — — C2 _
2b 2b

vaz —h%++/c2—h2=b

The calculation of h from this equation yields, of course, the same result as calculation directly from the triangle.

e = (o)
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a’ — h? = b? — 2b/c2 — h?2 + c? — h?

2
S
c2 + b2 — g2\°
o
2b

he |2 c2 + b2 — g2\*
- 2b

A generalized triangle with real or complex leg lengths can be associated with this equation.

\/a2 — h? + \/c2 —h%2=p a,b,c are constants  his the variable

Triangles with “impossible” leg lengths are useful for providing a geometric visualization.

O\\&

2 9(196) 2916 _ 1152
196 196 | 196

52 1152 115 ~
196 196 B
4+1152+ 9+1152
196 196

Triangles with imaginary leg lengths are also fine.

,/’iz\ Cs

>
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_ i (20)2 + 49 — (20)2\* . (—4-%49—F4) 3185
M 2(7) - 14 196

20 — 3185 | 20— 3185 \ _ .
196 196

4_|_3185_|_ 4_|_3185
196 196

Likewise, legs with complex leg lengths are also fine.

i
7
~

b=1+i

~ | A+D2+@+D2—@+D2\ | [ 2\’
_Jﬂ+02_< 2(1+ 1) ) _jm_(2+m>
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7z V2

2 2
Vi V3 Vi V3
(1+i)2— 7+7l‘ + (1+i)2— 7+7l =1+

A+ ——+——i) = [2i—-zi= |zi=

V3 3\’ 3 1 1(1 i)l
2 "2 2T 2

2

Triangles with complex leg lengths have a complex area. The area of the (1 +i), (1 +i), (1 +1i) triangle is:

\/_ \/_
hb (1+1i) V3

A = A = = =
rea 5 5 2l

From an analytic point of view, there is no problem using triangles with complex leg lengths.

Appendix VII: Triangle Puzzles:

Puzzle 1: Find the angle x. This is an example of a constructive solution to a puzzle.

1

2l

Create an equilateral triangle with sides of length “L”. Identify and mark all the known angles, and construct a new

triangle identical to the one filled with light blue (identical by side-angle-side).

/80° 80°1100°

87
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Note that we can now identify two legs of the original triangle as being of identical length “L” based on fact that two of
the vertices have identical angles of 80°. This allows the following new angle identifications (circled angles).

Now the angle “x” can be identified as 30°.

Puzzle 2: Find the angle x. This is an example of a simple combined geometry and algebra problem (problem as typically
presented is on the left; angles identified on right). The only “trick” is to recognize the values of the angles 6, vy, B, ¢.

0 + y+ 55° = 180° 0+ y=125°
20 + f = 180° 2w+ ¢=180° X+ B+ ¢=180°
x + 180° — 26 + 180° — 2y + 180° = 180°
x =2(0 + ) — 180 = 2(125°) — 180° = 70°
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Puzzle 3: What is the unknown angle? This is a problem known as Langley’s Adventitious Angle. The leftmost triangle is
how the problem is typically presented. The problem is adventitious in that it is not solvable unless the triangle’s angles
and lengths are properly set. The central and rightmost triangles show how some additional angles can be identified via
construction of new angles by inserting line segments of length equal to the length of the triangle’s base.

60°

/ -
W N
B0 ,,  50°%| 30°

The final solution is given below. Note that the term adventitious is being used ironically in that the angles, lengths, etc.
are not accidental, but rather they must be set exactly to certain whole numbers and equivalent length sections in order
for the problem to be solvable.

20°
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Puzzle 4: What is the area of the triangle? This is a problem that uses simple trigonometry.
h \
2%\
14 o
28
T _ 14 Tan(2x) — 2Tan(x)
an(x) = h an(2x) = 1—Tan?(x) 1 196
hZ
Tan(2x) = 28h _ _ 588h = h3 — 196h  h3 =784h  h? =784
X T T 196 21 B B B
28)(35
h = 28 A= ()2—() = 490
Note that this method can be used to solve the “puzzle” regardless of the lengths of the base side segments.
//A
/%
h
2X
v 2N <
. b
2a
T _a Tan(2x) = 2Tan(x) |
an(x) = h an(2x) = 1 —Tan?(x) 1 a?
~ h?
2ah h
Tan(2x) = T} 2abh = h3® — a”h h® = h(2ab + a®) h? = 2ab + a?

. (a + b)V2ab + a?
a 2

h =+/2ab + a?

90
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Puzzle 5: What is the radius of the circle? What percentage of the area of the triangle is taken up by the circle?

~

One can diagram the problem as follows.

Note that I, and |, are equal.

csc(W) =1 Jr
%:‘ csc(®-W)=IJr
r L ) Y=9-y
Y =072

Tan(¥) =1,
Tan(6 - ¥) =ri,
Iy =1z
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Solve the problem in general first.

h
r 0 Sin(0) 17 h h
T = - = T (—) = = = =
an(y) =y =Tan\7) =105 @) L T H+L V@i +L
H
hl
T'=H—+L L=10+r l=L—-r l1=l2=l
_h(L—=7r) AL hr
 H+L H+L H+L
N hr B (1 N h ) B hL
"THrr T " THYL) THYL
U hL 4)(12
=_H+L _ _ WA 7544468
1+ H+L+h 160+12+4
H+L
The area of the triangle is 24, so the % area consumed by the circle is:
r? m(1.67544468)?
% Area Consumed = ﬁ(mO) = 24 (100) = 36.745%

If the vertex of the right triangle’s legs is set at (0, 0), then the center of the circle is at (r, r). See a graphic showing this
circle in triangle below.

2

Circle in Triangle

w4
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Next, we can extend the construction to another circle.
i
h=4-< M r
1 r2
r
1 r
- K 2 LP
N\ J
Y
N " Y
Y
L*
The calculation of r; is similar to r; except for the calculation of the new value for L*.
"
\ o [,
JY
=
r
1 r,
\ - A o J
rycos(¥) rycos(¥)
The new calculation is:
0 Sin(6) L h
&) ln ﬁ
Tan =—="Tan (—) = = =
W=7 2) T1+cos® ;,L H+L
H
o L"=1L (v) =1L (w)
r, = =L —T4 —11C0S = — T, COS
T 1 1 v 2 w.
h {L* — 1,CO0S (Q)}
L 2 2)§ h{L —r; — r; cos(y) — r,cos(y) }
5 = =

H+L H+L
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hr,cos (%) hcos (%) _h {L — T —711C0S (%) }

+ =141+ =
LTy T H+ L H+ L
5,
h{L — Ty — T COS (—)}
2 o 0
= H+L :h{L n —ncos(3) |
hcos (%) H + L + hcos (g)
1+ ——2
H+ L
1412
6 1+ cos (6
cos (—) = ©) _ |__V160 _ (987087457
2 2 2
0
h{L — 1, — 7y €OS (7) } 4{12 — 1.67544468 — (1.67544468)(0.987087457)}
T = —
Y 4L+ hcos (%) V160 + 12 + 4(0.987087457)

r, = 1.212799283

The center of the new circle (assuming the vertex of the legs of the right triangle is at 0, 0) has an x-value of:

0 0
X, =711 + 17 COS (E) + 1,CO0S (E) = 4.526394069

y, =1, = 1.212799283

The graphic below illustrates the two “kissing” circles inside a right triangle.
5

Two Circles in Triangle

(28]
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This can be extended to a third circle.

-
h=4-x Iy r
L YX'2 ¢
2 I’3
T
. I \ J W
L J
e
N ™ J
Y
L**
0 Sin(0) L h
T3 ( ) in qH
T —_— — T — — — —
an(y) = e = Tan 5 ) = T o5 0 L H+L
H
hl** ko Xk Xk
T3 =TTl L™ =L —1r —r cos(y) — 2r, cos(y) [** = L™ — rycos(y)
_ h{L —7r — 1 cos(y) — 21, cos(y) — r3cos(y)}
£ H+1L
(1 N hcos (l//)) _ h{L —7r — 1 cos(y) — 21, cos(y)}
"3 H+Ll )~ H+1L
h{iL —r; — 1y cos — 21, COS 0 0
L { 1l H-(|—l//2 2 cos(y)} _h{L—rl—rl cos(i)—ZrZ cos(j)}
3 cos () B 0
1+H—+L H+L+hCOS(7)
Rt
0 1+ cos (6 \/
cos (5) =J = ©) _ %= 0.987087457

_ 4(12 — 167544468 — (1.67544468)(0.987087457) — 2(1.212799283)(0.987087457)
B V160 + 12 + (4)(0.987087457)

T3
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_ 2510585951 oo
"3 72859746047
The coordinates of the center of the third circle are:
0 0 0
X3 = 17 + 11 COS (E) + 21, cos (E) + 7r3C0S (E) = 6.590102251
ys =13 = 0.877905211
The graphic below illustrates the three “kissing” circles inside a right triangle.
Three Circles in Triangle
4 \
3
2
1
0
1 0 1 2 3 4 5 6 7 8 9 10 11 12

The process can be extended systematically:

“THYL

h {L — 17 — 17 COS (g) — 271, COoS (g) — 2713 COS (%)}

H + L + hcos (g)

0 6 6 6
X4 =11 + 17 COS (f) + 27, cos (f) + 27r3c0s (E) + 7, cos (E)

7‘4 ==

h {L — T, — 11 COS (%) — 2T, COS (%) — 273 COS (%) — +-+— 273, COS (g)}

H + L + hcos (%)

96

["* =L —1r — 1 cos(w) — 21, cos(w) — 213 cos(y) — rycos(w)



M. D. Gernon, 2/8/2024 97

6 0

6 0 6
X, =T + 11 COS (E) + 21, cos (E) + 2r3cos (§> + -+ 21,_;COS (§> + 7;,C0S (E)

The graphic below illustrates ten circles inside a right triangle. These ten circles consume 77.072 % of the triangle’s area.
5

Ten Circles in Right Triangle

Conclusion: The impact of the Pythagorean Theory on modern western thought can’t be understated. While
the Pythagorean relationship was not actually derived by Pythagoras, and was known as early as 1800 BC in
ancient Babylon, it was through Euclidean Geometry and the techniques and theorems of early Greek
mathematicians that the need for rigorous proof in all aspects of life was first understood. Note how often the
Pythagorean Theorem was used in proving the basic QM > AM > GM > HM inequality. Many basic principles of
math & life are based on the Pythagorean Theorem.



